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J. Phys. A: Math. Gen. 19 (1986) L385-L390. Printed in Great Britain 

LETI’ER TO THE EDITOR 

The quantum harmonic oscillator on a lattice 

E Chalbaudt, J-P Gallinar and G Mata 
Departamento de Fisica, Universidad Sim6n Bolivar, Apartado 80659, Caracas 1080, 
Venezuela 

Received 3 February 1986 

Abstract. We find the eigenvalue spectrum of a particle constrained to ‘hop’ between the 
sites of a simple cubic lattice in the presence of a spherically symmetric ‘harmonic oscillator’ 
potential. The eigenfunctions are found to be given in terms of the periodic Mathieu 
functions of period m. At low kinetic energies of hopping the solutions differ considerably 
from those of the continuum theory: the particle localises itself in a given shell around the 
origin and the vinal theorem is thereby violated. At high kinetic energies we obtain the 
usual equidistant levels of the harmonic oscillator on the continuous manifold. We discuss 
in some detail the spectrum of the three-dimensional case and the associated degeneracies. 
It is seen that the well known accidental degeneracy of the harmonic oscillator wavefunc- 
tions is only partially lifted by the discretisation of space. Finally, mention is also made 
of the relevance of our solution to the physical problem of the inversion layer at the surface 
of a semiconductor when it is doped with a spatially constant electric charge density. 

In a recent contribution to this journal, Gallinar and Mattis (1985) obtained an 
analytical solution, in terms of Bessel functions, for the eigenvalue spectrum of a 
particle constrained to ‘hop’ on a lattice (a ‘Wannier’ particle) when subjected to a 
constant force, i.e. subjected to a linear or piecewise linear potential (see the review 
by Mattis (1986)). Their solution is relevant to the problem of the inversion layer near 
the surface of a semiconductor in the presence of a constant electric field, or in the 
variously defined particles of lattice gauge theories (Kogut 1979). The following 
question then naturally arises. Are there any other privileged potentials on a ‘lattice’ 
for which an analytical solution in terms of known functions is also possible? Non- 
trivial analytical solutions in physics are so few in number, and are also so desirable, 
that a quest for them is clearly far from being an idle undertaking. 

In this letter we point out another such special-and important-solution, This is 
the solution to what may be called a quantum harmonic oscillator defined on the points 
of a simple cubic lattice. Thus, we shall take as our Hamiltonian X the following: 

X= - A X  [exp(iupj)+exp(-iupj)+$kz xf 
j 1 

where pj = -i a/axj, j runs over the d dimensions of the simple cubic lattice, U is the 
lattice constant and xj is the jth component of the position vector of the Wannier 
particle. The operators exp(*iupj) in (1) generate finite lattice translations of the 
particle (the ‘hops’) with lattice constant U. In expression (l), A 3 0  is the usual 
tight-binding matrix element for the ‘hopping’ of the Wannier particle and, finally, k 
measures the strength of the ‘spring’ of the oscillator. 

t Presently on sabbatical leave at: Department of Physics, New York University, New York, NY 10003, USA. 
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It might seem inappropriate to use a continuum Hamiltonian such as (1) for a 
particle in a lattice. However, for the present problem it is easier to solve the continuum 
form (1) and then project onto the discrete Hilbert subspace in which ( x j / a )  = nj takes 
on integer values nj only. By so restricting the Hilbert space of (1) to wavefunctions 
localised at the lattice points, the appropriate spectrum is thereby obtained. 

The problem posed by ( 1 )  has been briefly outlined by Mattis (1986) in his recent 
review on ‘The Few-Body Problem on a Lattice’. As pointed out by him, in one 
dimension (i.e. for d = 1 )  the spectrum of 3V is related to the eigenvalue spectrum of 
the inversion layer at the surface of a semiconductor, when the electrons or holes there 
‘hop’ in a region of constant electric charge density. This constant charge density gives 
rise to a potential V that varies as Va:x2, where x = na B 0 is the perpendicular distance 
from the surface of the semiconductor, with n an integer that labels the plane indices 
and with a being the lattice constant or distance between the planes that are parallel 
to the surface. The presence of this last one at x = 0 forces the wavefunction to vanish 
for x C 0, and makes it natural to choose the odd-parity eigenfunctions of (1) as the 
appropriate physical solutions to the problem of the inversion layer. Aside from this 
relevant physical application to semiconductor physics, what makes (1) uniquely 
interesting from a mathematical viewpoint is its exact analytical solvability by separ- 
ation of variables, for any d. For it must be stressed that the linear potential (Va: r ) ,  
or the Coulomb potential ( V E  r - I ) ,  for example, cannot be so separated on the lattice 
if d > 1. This is, of course, in sharp contrast with the separability of the same potentials 
on the continuous manifold. For these non-separable potentials one may wish to resort 
to Bethe lattice constructs to obtain analytical results when d > 1 (Gallinar 1984). 

Let us turn now to the solution of ( 1 )  by separation of variables. We first set d = 1 
and find that the eigenvalue equation XIY) = EIY)  may be readily solved by writing 
it in the momentum or p representation, with x = ialap, as 

k d2Y 
2 dP 

- 2 A  COS(P)Y(P)-- := E Y ( p )  

or 

d2Y(v) + (a - 2 q  cos 2v) * (  U) = 0 
dv2 (3) 

where 

8 E  
ka2’ 

a=- 8A 
4”-- ka2 v = fap 

Equation (3) is the canonical form of Mathieu’s differential equation (Abramowitz 
and Stegun 1965). Since x l a  has to be an integer number because the particle ‘exists’ 
only on the lattice points, the basis wavefunctions in the momentum representation 
will be plane waves with the periodicity p = ( 2 7 r / a )  of the reciprocal lattice. Hence, 
of all solutions of Mathieu’s equation in (3), only those periodic with period v = up12 = 
7r will be acceptable. In particular, according to well known properties, the so-called 
characteristic exponent of Floquet will then be zero (or an integer) to ensure the 
periodicity of * ( v ) .  The eigenfunctions Y,(u) of (3) shall be given, accordingly, in 
terms of the Mathieufunctions ce2,( v ;  q )  and se2,( U ;  q )  (Abramowitz and Stegun 1965) 
as 

Y X v )  = N c e d u ;  q )  ( r = 0 , 1 , 2 ,  ...) (4) 
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for the even periodic functions of period T, and 

9 % ~ )  = N! s e d u ;  4 )  ( r =  1 , 2 , .  . .) ( 5 )  

for the odd periodic functions of period T, N :  and N !  being appropriate normalisation 
constants. The corresponding energy eigenvalues will be 

E :  = & 2 2 a 2 r ( q )  ( r = 0 , 1 , 2 ,  ...) (even) (6)  

E:=&ka2b, , (q)  ( r = 1 , 2 ,  ...) (odd) (7) 

and 

with a2 , (q )  and b, , (q)  being the characteristic values of a in equation (3) for the even 
and odd periodic Mathieu functions of period n, respectively. The first five levels that 
arise from (6) and (7) are shown in figure 1 as a function of the dimensionless ‘kinetic 
energy’ parameter 2 A / k a 2 .  From the property a2, (0)  = b2,(0) = (2r)’ (Abramowitz and 
Stegun 1965), we find that for zero kinetic energy one has E :  = E:  = fka2r2 ,  and the 
particle then ‘sits’ on the two rth nearest neighbours of the origin (or on the origin 
itself for r = 0), its total energy being entirely potential energy. We emphasise here 

4 

1 

0 2 4 6 

2 A l k a z  

Figure 1. Plot of ( E + Z A ) / ( & d )  against the ‘kinetic energy’ parameter 2A/kaz for the 
first five levels of the one-dimensional discrete oscillator. The incipient equal spacing of 
the levels can already be discerned in this figure. 
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this result because it stands at odds (for r # 0) with what happens on the continuous 
manifold where, according to the vinal theorem, the kinetic energy and the potential 
energy are equal and thus vanish simultaneously. In this same limit (A=O), the 
wavefunctions cezl(u; 0) and se2,(u; 0) in (4) and ( 5 )  behave respectively as cos(2rv) 
and sin(2rv), corresponding to complete delocalisation in momentum space. As A is 
then turned on, the double degeneracy present (for r # 0) opens up into even and odd 
levels, which interlace each other as shown in figure 1. In the continuum regime 
[qI+Oo, and then we have that (Abramowitz and Stegun 1965), for either of the even 
or odd levels, 

which implies 

E, + -2A + ( r  + f) ( y2 ( r = O ,  l , 2 , .  . .). 

To obtain (8) we have used the property 6Zr(q) -u2, - , (q)  for Iql+Oo and have made 
the natural identification Au2= 1/2m, with m being the usual mass of the particle on 
the continuous manifold. The continuum regime ( 8 ) ,  characterised by equally spaced 
energy levels, can already be discerned in figure 1, although it is clear that for increasing 
quantum number r one has to go to ever higher values of the abscissa to bring this 
limit into evidence. 

It is worthwhile remarking that, as previously argued, it is the odd eigenvalues 
given by (7) that yield the eigenvalues of the inversion layer problem with a constant 
charge density. 

We consider now the wavefunctions in real space. From the Fourier expansions 
of the Mathieu functions (Abramowitz and Stegun 1965) 

and 
m 

s ~ ~ ~ ( u ;  q )  = B:k(q )  sin(2mu) 
m =O 

we obtain for the even wavefunctions 'Y:(x), in real space, that 

1/2 +a =(:) N :  m = - w  c A:k(q)S(x+mu) ( r=0 ,1 ,2 ,  ...) (11) 

where Ay2,( 9) = A;;( q )  and for the odd wavefunctions we obtain 
1/2 + m  

0 q, (x)=- i ( f )  N :  c B:k(q)a(x+ma) ( r  = 1 ,2 , .  . .) (12) 

with BF2,(q) = - B $ k ( q ) .  
From (1 1) and (12) we see that the probability of finding the particle in the rth 

eigenstate at a certain lattice site m is proportional to the coefficient lA$;(q)l2 for the 
even states and to (B:k(q)I2 for the odd ones. To lowest order in q, these coefficients 

m = - m  
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are given by (Abramowitz and Stegun 1965) 

with C', = A', or B', , TS > 0, and by 

Also, one has 

A:(O) = B:(O) = 1 (r>O). 

Thus, to lowest order in 141 = 8A/ka2<< 1, the probability of finding the particle (which 
is in the rth eigenstate) at a site that is s lattice constants away from the rth lattice 
site decays very rapidly (from nearly one) as s increases. 

In figure 2 we show part of the eigenvalue spectrum for d = 3 obtained by separation 
of variables. The associated eigenstates, which are the product of the one-dimensional 

2Alka' 

Figure 2. Plot of ( E + 6 A ) / ( f h 2 )  against the 'kinetic energy' parameter 2A/ka2 for some 
of the levels of the three-dimensional discrete oscillator arising from the first six shells of 
the cubic lattice. The equal spacing of the continuum first six levels can also be discerned 
in the figure. As displayed, some of the levels of the discrete case have been omitted for 
visual convenience. Levels; A, (%aoao); B, (%aOa2); C ,  (aoaob2); D, (a0a2a2); E, (a2a2b2); 
F, (a2b2b2); G ,  (ao%b4); H, (a0b2b4). 
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wavefunctions, are symbolically denoted by indicating on each curve the I D  levels 
from which they originate. These 3~ wavefunctions are degenerate in general. As 
shown, the levels in figure 2 have been chosen so that all first six levels of the continuum 
can be seen to emerge on the right-hand side of the figure. For q = 0, the degeneracy 
of the wavefunctions associated with the rth shell around the origin of the cubic lattice 
will be given by the number of rth nearest neighbours of the origin. This number is 
equal to the number of distinct integer solutions ( n x ,  n,,, n , )  of the Diophantine equation 

N ( r ) =  n : + n $ + n t =  E / i k a z  (16) 

where N (  r )  5 0 is an integer (function) that admits of the above decomposition. For 
instance, N (  r )  = r if O <  r S 6, N ( r )  = r +  1 if 7 s r s  11, etc. The ni ( i  = x, y, z )  can be 
associated with the wavefunctions cezn if ni is positive and to the sezn if ni is negative, 
with n = Ini\. The product wavefunction associated with (n,, n,, n,) when q = 0 will 
thus go over into an eigenstate of energy: 

in the continuum harmonic oscillator, where pi is the sign of ni (zero being considered 
‘positive’). As can be seen from figure 2, there is considerable level crossing for 141 # 0 
and different levels of the discrete case coalesce (for 141 + CO) onto a given level of the 
continuum oscillator, thus filling up the required degeneracy equal to ( n  + I)(  n + 2)/2 
( n  = 0,1,2, . . .) for the nth energy level of the usual oscillator. For instance, we show 
in figure 2 the levels denoted by (aoa2uz), (a2b262) and (uob2b4), which correspond to 
(n,, n,, n,) equal to (0, 1, l ) ,  (1, -1, -1) and (0, -1, -2), respectively. All of these go 
to the level of energy y(k/m)”2 of the continuum oscillator. As A is turned on, a 
degenerate level of energy ( k a 2 / 2 ) N ( r )  in (16) splits into M levels, where M is the 
number of different associated triplets (n,, n,, nz), disregarding internal permutations. 
The degeneracy of any of these resulting levels, apart from crossings, is 1, 3 or 6, 
depending upon whether the ni in the triplet are all equal, two of them are equal, or 
all are different, respectively. 

As is known, the point symmetry group of the cubic lattice is Oh.  Since the 
irreducible representations of this group have a maximum dimension of three, whilst, 
on the other hand, here there are levels with sixfold degeneracy, it follows that the 
accidental degeneracies of the usual harmonic oscillator defined on the continuous 
manifold are not completely lifted in the discrete case studied here. The ‘hidden 
symmetries’ of (1) associated with this accidental degeneracy will be considered 
elsewhere. 

One of us (J-PG) would like to thank Professor D C Mattis for valuable discussions 
and for motivating this work. 
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